If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11y^2-10y-14=0
a = 11; b = -10; c = -14;
Δ = b2-4ac
Δ = -102-4·11·(-14)
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{179}}{2*11}=\frac{10-2\sqrt{179}}{22} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{179}}{2*11}=\frac{10+2\sqrt{179}}{22} $
| 339=18x | | -116-15x=3x+190 | | 8=2(5x/3-1) | | 6=3(x/7+2) | | 4e(e+2)=0 | | 3x-1)^2=3-x^2 | | 9c^2+15c+16=0 | | 48=6(2x+7) | | -3x-136=13x+184 | | 13=+x/4 | | 2x-5(x-4)=-7+3x-9 | | 113-16x=-95 | | 4e(e=2) | | 2.5=x/2-6 | | -5(x+3)-2=13 | | 2.5=6-x/2 | | -107=5x+28 | | -138+3x=11x+78 | | -4(x+5)-1=-29 | | 5x/2-4=21 | | -8(2x-5)=-24 | | 4(x-4)+3=-1 | | (x+12)+10+x=180 | | (5x/2)-2=13 | | -x-50=62+6x | | -2(2.5x+4)+2=12+4x | | -21x(6-1=0 | | -7x-69=75+x | | -1/3(6x-9)=7 | | (90)+(3x+6)+(8x+7)=180 | | -2=6x+2 | | -6-k=-k+1 |